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INTRODUCTION

Statistical arbitrage is a trading strategy born in the late 1980s as
a proprietary strategy by the quant group under Nunzio Tartaglia
in Morgan Stanley. The aim of the strategy is to take advantage of a
mis-pricing between two or more assets which exhibit co-movement(commonly
referred to as: cointegration) in their share prices, by assuming a
LONG position in one (or several) assets which are thought to be
under-valued and a SHORT position in the other(s) which are though
to be over-valued, betting that the asset prices will converge to their
“equilibrium” value thus locking in profit. This similar historical price
movement is usually due to some fundamental reason such as: assets
which have the same risk-factor exposures i.e. stocks belonging to the
same industry, and thus they have the same dynamics in their share
price movements.

The basic intuition governing statistical arbitrage is the funda-
mental principle of trading: “Buy low, Sell high”. However trivial
this principle sounds, it would require that a trader is able to deter-
mine the intrinsic value of an asset in order to determine if the asset
is over-valued or under-valued and thus trade accordingly. Pricing
securities in this manner would require asset pricing models.

Pricing models in finance could be divided into relative pricing
models and absolute pricing models. Absolute pricing values secu-
rities from their fundamentals such as Earnings, fundamental ratios
and most commonly discounted value of the future dividend yields.
This is common among value investors. Relative pricing on the other
hand stipulates that two securities which could be substitutes for
each other should trade for the same price(without explicitly stating
what that said price is). This is commonly referred to as LOP: The
Law of One Price. Ingersoll(1987) states the Law of One Price as the
“proposition . . . that two investments with the same payoff in every
state of nature must have the same current value.”

In the statistical arbitrage framework, an asset is priced relative to
its peers such that: assets which exhibit similar risk factor exposures,
are likely to have similar price dynamics, and thus any deviation of
one, or a set of assets from this price dynamics would be interpreted
as a relative mis-pricing which is likely to be corrected. This gives the
reason why such arbitrage strategies are also referred to as Relative-
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value arbitrage strategies.
The divergence in a set or pair of assets is quantified using a spread

time series for the pair or set of assets. This spread time series quan-
tifies the magnitude of divergence enabling an analyst to determine
the extent of mis-pricing that has occurred and thus trade accord-
ingly. Several methods exist in literature for computing the diver-
gence or spread such as: using distance-based methods, ratio-based
methods, the minimum variance portfolio method, the Ordinary
Least Squares method, using the Total Least Squares method, Kalman
filtering, stochastic control approach among others.

This study aims to explore the statistical arbitrage strategy on
stocks listed in the Nairobi Securities Exchange. The framework for
implementing the strategy will be as follows:

• Pairs search and selection: Identify possible pairs of assets which
have co-moving price dynamics

• Spread modelling: Construct and model the spread using the
several methods listed.

• Trading Rules: Come up with optimal trading rules such as maxi-
mum holding periods, optimal entry and exits, stop losses etc.

The questions we seek to answer in this study are:

1. Are there any cointegrated pairs of stocks listed in the Nairobi
Securities Exchange for which the co-movement has been shown to
be consistent historically, both in the price dynamics and in their
risk factor exposure profiles ?

2. Among the spread modelling techniques used, which is the best
performing, in terms of consistency, and portfolio returns ?

3. What are the optimal rules for trading under the statistical arbi-
trage framework ?
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DATA & METHODOLOGY

Data

The data used in this study was fetched from WSJ(Wall Street Jour-
nal) who is a verified data vendor. The data was available for each
listed stock from its inception into the exchange to date, and pro-
vides the OHLCV format common for financial datasets. Data on
the factors used such as oil spot prices(BRENT OIL) and gold spot
prices(XAUUSD) were fetched from yahoo finance, for the period
under analysis. The data on the market prices(NSE All Share Index)
were fetched from Investing.com for the period under investigation.
Data on inflation rates, currency conversion rates(USDKES) and trea-
sury bill rates were downloaded from the Central Bank of Kenya
website.

Methodology

The following methodology was followed through this study in line
with the framework suggested above for statistical arbitrage:

We design a universe of stocks from which to test for suitable
pairs. This is especially suitable since there is a large number of
stocks to analyze and the number of pairs to test grows exponentially.
For this we choose only the constituents of:

• FTSE NSE 25 - A portfolio of market capitalization weighted index
of top 25 companies listed on NSE. This also is useful, since we
are assured that the liquidity the 25 companies trade at is accept-
able as compared to other minority companies which may pose a
liquidity risk in trading pairs.

By choosing from this basket we eliminate liquidity risk, since
statistical arbitrage involves frequent trading, then being able to liqui-
date positions instantly when certain conditions are met is important,
and thus selecting most largest traded assets in the Nairobi Securities
Exchange helps in affirming that there is little-to-no liquidity risk.
(Gatev, Goetzmann, & Rouwenhorst, 1998), (Krauss, Do, & Huck,
2017), (Stübinger, 2019) also use the same approach when selecting
the universe of stocks to test for pairs cointegration.

We construct a cointegration test by choosing a suitable back test
range over which to search for cointegrated pairs, which we chose
to be 1200 days(approximately 4 years). The test used is the Engle
& Granger two-step cointegration model. The data used for actual
back-testing of the strategy will be different from the data used in
pairs searching in order to avoid data snooping bias.

http://Investing.com
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Once we identify several pairs to analyze, we choose the most
suitable pair to trade based on the following factors:

• That the pair satisfies the cointegration tests, at the 5% level.
• That the pair comes from the same sector e.g. Banking, etc, this

will enable the portfolio constructed from the spread to have some
fundamental validity.

• For pairs rejected at the above point, we could re-consider them
in scenarios where i.e. pairs for which there seems to be a funda-
mental reason for them to be cointegrated, e.g. a pair comprised
of insurance and banking stock, is ignored in step 1, but it is still
viable considering that banking and insurance both fall under
“Financial sector”.

• Data availability and consistency for the two stocks.
• Market cap of companies, and good fundamentals available, for

this reason, the FTSE NSE 25 ensures a requirement of 1 billion
KES market cap, thus this is automatically qualified by the uni-
verse selected.

Once identified as the suitable pairs for trade, we model the two
stocks using the common trends model, which supposes that the
price of an asset can be broken into a common factor part and a sta-
tionary part. In modelling the asset prices using the common trends
model, we model the common factor part using either a single-factor
model or a multi-factor pricing model composed of several selected
variables. We proceed to work with the best model between the two,
using the coefficient of determination R2. The approach on using
multi-factor models closely follows the work of (Vidyamurthy, 2004)
which uses the APT framework.

For the single-factor model, we use the log market prices, such as
the log prices of a market index such as NASI1, while for the Multi- 1 NSE All Share Index

factor model, we consider the following factors to include in the
model:

• USD/KES currency conversion rate.
• The inflation rate (daily).
• The rate of interest e.g. risk free rate (91-day treasury bill)
• NASI log prices - the market.
• BRENT OIL Price/Barrel.
• XAUUSD - Gold spot prices.

We proceed with the chosen pairs to use the methods listed above
for computing the spread(divergence) between the two. For this task
we explore several models for computing the hedging ratio. The
hedge ratio the most optimal portfolio holding in the second leg of
the pair, given that we LONG/SHORT one unit in the first leg of
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the pair, in order for us to be hedged. The spread from a portfolio
depends on the hedging ratio chosen. The models for computing
hedging ratios which we consider are regression based methods.
When minimizing variance of the resulting portfolio then the hedge
ratio obtained is equivalent to the slope term in an OLS model, this
approach is also called the Minimum variance approach. To see this
relationhip, we consider a linear combination of the two assets(say
A, B) making up the pair:

rA − λrB

were: rA is the returns from security A, and rB is the returns from
security B. The value of λ which results in the least portfolio returns
variance is the best hedge ratio. To compute the variance, we take:

(rA − λrB)
2 = r2

A + λ2r2
B − 2λrArB

Var(rA − λrB) = Var(rA) = λ2Var(rB)− 2λCov(rA, rB)

To find the value of λ which minimizes the portfolio variance, we
differentiate the resulting funtion while equating it to zero.

2λVar(rB)− 2Cov(rA, rB) = 0

λ =
Cov(rA, rB)

Var(rB)

which also happens to be the definition of the dlope obtained in
simple linear regression using the same returns series.

For hedge ratios and the spread constructed using the OLS, we try
out various models such as: - Static OLS - We construct the spread
by using the hedging ratio obtained by running a regression using
all available back-test data. Hence the hedging ratio is constant all
through the backtest. - Expanding-window OLS- We construct the
spread using the hedge ratios obtained by running an expanding
window OLS, which could be refreshed(computed) daily, or after
k days(referred to as : refresh rate). Hence at any point in time, the
hedge ratio is obtained using all the data since inception of the back
test. This ensures we have no data snooping bias i.e. using data which
we couldn’t possibly have on that day. Hence the hedging ratio is a dy-
namic one. - Rolling-window OLS - We construct the spread using
hedge ratios obtained by using rolling-forward regression which only
uses data of the last n days(referred to as :lookback period) in regres-
sion. Where the regression statistics could be re-computed after k
days(The refresh rate). - TLS - We give a motivation for using TLS,
since OLS only accounts for variability in one direction while TLS
accounts for variability in both directions, and thus could yield more
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realistic hedge ratios regardless of the manner in which we position
the legs of the pair, as compared to the OLS. We compute both the
static TLS, an expanding-window TLS, and a rolling-window TLS.

For every regression method above(static, expanding-window and
Rolling-window) except for the TLS approach, we implement both
a weighted regression scheme and an unweighted one. We explore
this since financial data is usually highly dynamic, and thus weighted
regression i.e. which gives more weight to most recent observations
than past observations is sensible in the financial modelling context.
The weighting technicque we use is linearly growing weights.

We now go into the tradability of the pairs, by analyzing the
spread using the Ornstein-Uhlenbeck process which is a model for
mean reverting continuous-time processes. We analyze the spread in
order to determine:

• Perfect cointegration or simply strong cointegration by analyzing
the common trends model to determine the equilibrium and coin-
tegration coefficient as well as to determine the SNR ratio, which
will indicate whether the spread might be a profitable trade.

• Consistency of mean reversion, which will be the important in
determining whether the pair is practically tradeable.

• Mean of the spread and deviations, which will help us in better
understanding the spread and the behavior we expect it to have in
the future.

• Threshold levels and styles to use, since different spreads could
warrant using different styles e.g. static thresholds, Adaptive
thresholds, unequal static thresholds, etc.

• The half life of reversion - to help us determine holding periods
and lookback periods when designing adaptive bands around the
spread series.

We take transaction costs into account, by assuming a transaction
cost of 1% per trade.

For testing the profitability of the pairs trading, we use various
statistics to compare it to the Kenyan benchmark: NSE All Share
Index by computing:

• Annualized returns.
• Sharpe ratio: A meaure of return per unit risk
• Alpha: A measure for the portion of the strategy’s returns that

are not attributable to “Beta”, or the portion of performance at-
tributable to a benchmark

• Beta: A measure of exposure to market risk of the strategy
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ANALYSIS

As at August 9, 2020, the FTSE NSE 25 was comprised of the follow-
ing securities with their respective industries:

Company Name Ticker Industry
Absa Bank Kenya PLC ABSA Banking
Diamond Trust Bank Kenya Ltd Ord 4.00 DTK Banking
Equity Group Holdings Plc Ord 0.50 EQTY Banking
I&M Holdings Plc Ord 1.00 IMH Banking
KCB Group Plc Ord 1.00 KCB Banking
NIC Group Plc Ord 5.00 NCBA Banking
Stanbic Holdings Plc ord.5.00 SBIC Banking
Standard Chartered Bank Kenya Ltd Ord 5.00 SCBK Banking
The Co-operative Bank of Kenya Ltd Ord 1.00 COOP Banking
Nation Media Group Ltd Ord. 2.50 NMG Commercial and Services
WPP Scangroup Plc Ord 1.00 SCAN Commercial and Services
Bamburi Cement Ltd Ord 5.00 BAMB Construction and Allied
KenGen Co. Plc Ord. 2.50 KEGN Energy and Petroleum
Kenya Power & Lighting Co Ltd Ord 2.50 KPLC Energy and Petroleum
Total Kenya Ltd Ord 5.00 TOTL Energy and Petroleum
Britam Holdings Plc Ord 0.10 BRIT Insurance
CIC Insurance Group Ltd ord.1.00 CIC Insurance
Jubilee Holdings Ltd Ord 5.00 JUB Insurance
Kenya Re Insurance Corporation Ltd Ord 2.50 KNRE Insurance
Liberty Kenya Holdings Ltd Ord.1.00 LBTY Insurance
Centum Investment Co Plc Ord 0.50 CTUM Investment
Nairobi Securities Exchange Plc Ord 4.00 NSE Investment Services
British American Tobacco Kenya Plc Ord 10.00 BAT Manufacturing & Allied
East African Breweries Ltd Ord 2.00 EABL Manufacturing & Allied
Safaricom Plc Ord 0.05 SCOM Telecommunications

Pairs search

We thus formulate the pairs search in such a way that the formation
period takes the first 1200 days(approximately 4 years) since incep-
tion of the two assets. This is necessary since, all listed assets have
different Initial listing dates, thus when joining price series of two
assets, the starting date will equal the date of the latest Initial list-
ing date between the two. The latest Initial listing date for the stocks
included in FTSE NSE 25 is 2014.
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Testing spread series for stationarity

The two-step Engle & Granger procedure for cointegration searches
for the parameters β0, β1 ρ which yield the best fit to the following:

Yt = β0 + β1 ∗ Xt + εt

εt = ρ ∗ εt−1 + νt

where
Xt, Yt : The log-prices of the assets in our pair.2 2 We choose to conduct the regression

analysis using log prices, although
studies conducted on which price
series to use indicate that results could
be near identical when conducting
regression using the log prices, or the
real price series themselves.

β0 : The intercept term in our model, which we will later refer to
as the equilibrium.

β1 : The slope term in our regression model, which i commonly
referred to as the cointegration coefficient or the hedge ratio.

εt : The idiosyncratic random error component, which is assumed
to distributed as εt ∼ N(0, œ2). This error component is actually
referred to as the spread series.

The test used in determining if the spread is stationary is the Aug-
mented Dickey-Fuller test.

Note that if we conduct a regression analysis of the form:

Yt = β0 + β1Xt + εt

we would get different values for the regression coefficients β0, β1

as well as a different spread series εt since in an OLS setting the or-
der i.e. the series we use as the independent variable(or dependent
variable) affects the value of the regression coefficients, and revers-
ing the order of the regression variables won’t equal inverting the
coefficients of the first model. However this holds true for Total Least
Squares regression, which we shall encounter in the next section.

To counter this in our pairs search, we do OLS regression twice
for a single pair, i.e. given the ticker JUB and KNRE, we conduct
regression twice. First when JUB is the independent variable, and
KNRE the dependent variable, and secondly, we conduct the regres-
sion analysis when JUB is the dependent variable, and KNRE the
independent variable.

We then filter only pairs for which the ADF p value is less than or
equal to a threshold value of 0.01, which would indicate a strationary
spread and thus a strong co-integration relationship during the pairs
search period. For this threshold value, we obtain 41 potential pairs
to investigate.

The results of the ADF test for co-integration are shown below:
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pair Alpha Beta P value

1 ABSA-COOP 1.727 0.442 0.0100000

4 IMH-SCBK -7.568 1.903 0.0100000

8 SCBK-IMH 4.250 0.393 0.0100000

10 NMG-SCAN 3.380 0.379 0.0100000

13 SCAN-NMG -4.365 1.651 0.0100000

26 DTK-IMH 2.655 0.772 0.0103041

28 IMH-ABSA -3.053 2.006 0.0127137

31 IMH-DTK -3.150 1.229 0.0139747

38 NCBA-IMH 1.549 0.687 0.0191635

40 COOP-ABSA -2.468 1.718 0.0196202

For this analysis we proceed to work with the pair DTK~IMH,
since the pair satisfies the requirement of cointegration, same sector,
and that the two companies have the same business model.

The common trends model

(Vidyamurthy, 2004) shows that a more simpler approach to mod-
elling the cointegrating relationship between two securities is through
the common tredns model. Under this model, the security’s price is
exoressed as a simple sum of 2 component time series:

• A stationary component, the spread component.

• A random walk component, or the trend component.

This composition ensures that, if two series are cointegrated,
then the trend component of the two series must be identical upto
a scalar(the cointegrating coefficent). This however would only be
true for perfectly cointegrated time series, however for partially coin-
tegrated time series, a strong correlation coefficient between the two
trend components is sufficient for a pair to be tradable.

Given two series: Xt, Yt:

Yt = ηyt + εyt

Xt = ηxt + εxt

ηyt = αηxt , α : Cointeration coe f f icient

Given that we now have suitable pairs to test and trade, we turn
to asset pricing models with an aim of giving a fundamental reason
as to why the pairs above have a co-integrated relationship. In this
section, we investigate if the assets comprising the selected pair have
similar risk factor exposure profiles.
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In this analysis, we use the log prices instead of the real prices
themselves, since it is common practice to model asset prices using
the log-normal model in finance.3 3 When modelling prices using a log-

normal model, i.e. we assume that the
prices are log normally distributed, this
enables the random walk model to be
applied to the security prices, and the
normal distribution to be applied to the
log returns

Single-factor models

Many common single-factor asset pricing models such as the CAPM
state that the risk-free adjusted returns from a security are fully ex-
plained by the risk-free adjusted returns of the market, which gives
rise to a linear model of the form:

E(Ri) = R f + [E(Rm)− R f ]βi + εt

where:
E(Ri) : The expected returns from security i
R f : The risk-free rate of return
E(Rm) : The expected returns from a market portfolio such as a

market index.
εt : The idiosyncratic random component, εt ∼ N(0, σ2)

Thus for this section our interest is to model the log prices and not
returns. We fit a regression model for the two assets(Which act as the
response variable in our case) using the log prices of the NASI(which
acts as a proxy for market) as the only explanatory variable and
investigate if the model is a good fit for the data.

Our hypothesis is that: There exists a strong positive linear rela-
tionship between the market movement and the movement of the log
prices of both assets.

A plot of the relationship between the two is illustrated:
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It is evident that the relationship is strongly linear as expected,
and the coefficient of determination in the models .68 for DTK, and
.57 for IMH. This implies that: 68% of total variability in DTK log
prices are explained by log prices of NASI, while only 57% of total
variability in the log prices of IMH is explained by the log prices of
NASI.
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Table 2: Model fitted on DTK log prices

term estimate std.error statistic p.value

(Intercept) -1.038101 0.1337518 -7.76140 0

log(NASI) 1.244103 0.0268292 46.37117 0

Table 3: Model fitted on IMH log prices

term estimate std.error statistic p.value

(Intercept) -1.0956844 0.1201688 -9.117878 0

log(NASI) 0.8816134 0.0241046 36.574452 0

Multi-factor models
We consider multi-factor models, where instead of a single ex-

planatory variable such as in single-factor models, we utilize multiple
variables in an attempt to price a security. The model is of the form:

E(R) = R f + β1R1 + β2R2 + ... + βpRp + εt

where:
Ri : The return contribution from each of the p factors.
βi : The factor exposures for the respective factors chosen.
R f : The risk free rate of interest.
εt : The idiosyncratic random error component
For our analysis we chose the following variables:

• USDKES: The currency conversion rates for Kenyan shillings and
US Dollars.

• NASI: The proxy for market returns in Kenya

• Inflation Rates: Kenya’s annual inflation rates

• Interest rates: The 91-day treasury bill rates.

• BRENT: Oil price per barrel, as listed in NYSE

• XAUUSD: The spot prices for Gold as listed in the NYSE

We seek to investigate if the two assets making our pair are af-
fected by the above factors in the same manner, since this would be a
good justification for their cointegrated relationship. We utilize multi-
ple linear regression to model the log prices of the assets making our
pair using the above listed factors as the explanatory variables.

We create a feature vector for the BRENT and XAUUSD by adjust-
ing them using the currency conversion rate, so that we have the spot
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prices for oil/barrel and gold in Kenyan currency. We also create a
feature called RROI4, which is a rate of interest adjusted for inflation 4 Real Rate of Return

as follows:
We expect the following hypotheses to stay true to the relationship

between the log prices and the factors chosen:

Relationship with market movement

• We expect a positive relationship between log prices of assets and
the market prices (NASI).5 5 This was illustrated earlier in the

section on Single-factor asset pricing
models

Relationship with inflation and interest rates

• We expect a negative relationship between the log prices of the
assets and inflation, as well as log prices and interest rates, since
during period of inflation, rational decision makers prefer con-
sumption as opposed to savings and investments.
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Figure 1: Historical Inflation rates
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Figure 2: Historical 91-day treasury bill
rates

When interest rates are higher, then short term securities which
are risk free such as 91-day treasury bills are attractive, this drives
investors to quit investing in risky assets such as stocks and invest in
risk-free government assets. The chart below shows the relationship
between the Real Rate of interest(which is simply the rate of inteerst
adjusted for inflation) and the log asset prices.
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Relationship with commodities

• We expect a negative relationship between log prices of the assets
and oil prices or gold prices, since commodities such as gold and
oil are usually considered by investors to be safe haven invest-
ments,
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Figure 3: Historical XAUUSD(Gold)
spot prices
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Figure 4: Historical BRENT(Oil) prices

such that in periods of high inflation, uncertainty and increased
volatility in stock markets, investors prefer having their investments
in commodities such as gold and oil.
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We fit a no-intercept multiple linear regression model to the
dataset, where the explanatory variables are: BRENT prices in KES,
Gold spot prices in KES, The real rate of return(RROI), and the mar-
ket prices(NASI), while the response variables are the log prices for
the two assets. The choice for the no-intercept model arises during
step wise model selection, whee we found out that the no-intercept
model is significantly superior than models with the intercept term.
Another possible reason for omitting the intercept in our case could
also be the fact that, the intercept in most asset pricing models is usu-
ally interpreted as the risk free rate of return, however in our case we
already included the risk-free rate of return6, hence there is no need 6 We include the risk-free rate of return

through the variable RROI, which as
defined earlier is the inflation-adjusted
risk-free rate of return

to conclude an intercept in the model.
From the fitted models, the coefficient of determination(R-squared)

in the models are: .9978 for DTK, and .9979 for IMH. This implies
that: 99.78% of total variability in DTK log prices are explained by
factors chosen, while only 99.79% of total variability in the log prices
of IMH is explained by the factors chosen. This level of improvement
over the single-factor model is noteworthy, and thus we prefer to use
the multi-factor models for the common trends.
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Table 4: Model fitted on DTK log prices

term estimate std.error statistic p.value

NASI 0.0153702 0.0003272 46.97153 0

RROI -1.7274345 0.0860365 -20.07794 0

BRENT(KES) 0.0000703 0.0000036 19.36050 0

XAUUSD(KES) 0.0000097 0.0000005 20.24915 0

Table 5: Model fitted on IMH log prices

term estimate std.error statistic p.value

NASI 0.0102082 0.0002045 49.90617 0

RROI -1.1634575 0.0537814 -21.63307 0

BRENT(KES) 0.0000545 0.0000023 24.00506 0

XAUUSD(KES) 0.0000048 0.0000003 16.15332 0

It is evident that the two asset log-prices are affected in the same
manner and upto the same magnitude with the macro-economic fac-
tors chosen, i.e. they both have a positive relationship with: NASI,
BRENT(KES), XAUUSD(KES) and have a negative relationship with:
RROI as expected. This helps explain their co-integrated relation-
ships, since they have the same risk-factor exposure profiles.

From the fitted models above, the residual series from the two
model would serve as the stationary component in the common
trends model, we therefore proceed to test for their stationarity using
the ADF test. The reisudals from the IMH model give a p value of
0.01, and DTK residuals give a p value of 0.05 confirming that they
are indeed stationary at the 5% level7 7 The p-value for the DTK Residuals

are not strongly significant, although it
could still be regarded near-stationary

We proceed to test for perfect/partial cointegration, which natu-
rally arises from using the common trends model8. We specifically

8 Since if two series are cointegrated,
then their trend components must be
identical upto a scalar.

compute the pearson’s coefficient correlation between the trend com-
ponent fo the two series, such that for perfectly cointegrated series,
the correlation coefficient will take a value either +1/-1, while for
partial cointegration, the correlation coefficient will strongly be near
+1/-1. For this analysis the correlation coefficient was found to be
0.9926, which implies near-perfect cointegration for the trend com-
ponent for the two price series. This implies that this pair is a good
candidate for statistical arbitrage.
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STRATEGY FORMATION

Since the pair chosen, is a suitable candidate for the pairs trade, in
this section we proceed further with the pair and compute their coin-
tegration coefficient9. We use the methods listed in the methodology 9 commonly referred to as the hedge

ratiosection to compute the hedge ratios.

Static OLS Hedge ratio

In this section we compute the hedge ratio using data since inception
up to the start of the trading period to compute the hedge ratio.
We then utilize this hedge ratio for the rest of the strategy back-test
period. This hedge ratio stays constant, hence the name static. We
implement both a weighted version of the static OLS, where the
weights are arithmetically increasing, and a static version without
weighting.10 10 For this analysis, the static OLS is

fitted using data from 2009 to 2011, and
the hedge ratios estimated are used for
the period 2012 to 2018.

Table 6: Static OLS Model fitted (Un-weighted)

term estimate std.error statistic p.value

(Intercept) 1.309413 0.0578426 22.63751 0

IMH 1.168153 0.0175172 66.68594 0

Table 7: Static OLS Model fitted (Weighted)

term estimate std.error statistic p.value

(Intercept) 3.611470 0.1040730 34.701304 0

IMH 0.389896 0.0472909 8.244632 0

Expanding Window OLS

An expanding window OLS enables us to compute dynamic hedge
ratios, where the regression is conducted in an expanding-window
walk-forward fashion so that the last hedge ratio is computed using
data since inception.

May 18
2012

Jan 03
2014

Jul 01
2015

Jan 03
2017

Jul 02
2018

Expanding−window Hedge ratio2012−05−18 / 2018−12−18

0.6

0.8

1.0

1.2
Unweighted
Weighted

Figure 5: Expanding-window OLS
Hedge ratios

A motivation for using this model is: Financial time series data
such as stock prices are usually subject to changes due to changing
market regimes and varying volatility, therefore having a model that
is at least adaptive to the changing data does justice to the analysis,
instead of having a single static hedge ratio, which would likely be
making a strong assumption that things are stationay across time,
which isnt the case for financial data. For the expanding window
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OLS, we also compute a weighted version of the same, where the
weights increase linearly with time.

Rolling Window OLS

The rolling window OLS enables us compute the hedge ratio in a
walk-forward fashion where we set a lookback period equal to 30

days, and a refresh rate of 5 days, such that the regression is only
conducted using the 30 previous data points and recomputed after 5
days.

May 18
2012

Jan 03
2014

Jul 01
2015

Jan 03
2017

Jul 02
2018

Rolling OLS Hedge ratios2012−05−18 / 2018−12−18

−1

 0

 1

 2

 3
Unweighted
Weighted

Figure 6: Rolling-window OLS Hedge
ratios

This enables the hedge ratios from the model to be even more
adaptive to the changing market conditions, with the downside that
the hedge ratios would be too noisy. We implement a weighted ver-
sion for the same.

Total Least Squares

A major downside to using the OLS as a model for hedge ratio com-
putation, is that the hedge ratios computed are dependent on which
asset we choose as our independent/dependent variable. This is be-
cause in the OLS framework, the explanatory variable is assumed to
be constant, and known. This assumption might be too strict since
in our analysis where we use one price series to explain the other,
both price series are subject to random fluctuation as demonstrated
in their High-Low range.11 11 For this analysis, the static TLS

using data from 2009 to 2011 gives an
intercept of 0.7849, with a beta(hedge
ratio)of 1.3272

May 18
2012

Jan 03
2014

Jul 01
2015

Jan 03
2017

Jul 02
2018

Expanding−window Hedge ratio2012−05−18 / 2018−12−18

0.7

0.8
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1.0

1.1

1.2

1.3

Figure 7: Expanding-window TLS
Hedge ratios
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Jan 03
2014

Jul 01
2015

Jan 03
2017

Jul 02
2018

Rolling−window Hedge ratio2012−05−18 / 2018−12−18

1.0

1.5

2.0

Figure 8: Rolling-window TLS Hedge
ratios

Total Least Squares on the other hand, takes care of this scenario,
since in the TLS framework, variability/errors from both series is
taken into account in the regression model. TLS does this by min-
imizing sum of perpendicular squared distance between the data
points and the regression line.For TLS regression, the hedge ratio
computed when asset A is the independent variable equals the in-
verse of the hedge ratio computed when asset A is the dependent
variable, which would be intuitive for a pairs trade. It is important
however to note that the TLS is unstable when few data points are
used, thus when setting look-back period, we set a larger period than
when using the rolling OLS.12

12 We use an arbitrarily chosen 200-day
rolling OLS

Spread Modelling

Once the hedge ratios are obtained we proceed to construct the
spread, which would be the residuals of the linear regression model
fitted, a plot of the spreads is shown. It is clearly seen that the
spreads are mean-reverting around a mean of 0

13.

13 The mean is not strictly 0, due to the
equilibrium part(the intercept) of the
regression models formulated

The mean reverting component is essential, since it enables us
utilize models for mean reversion such as the Ornstein-Uhlenbeck
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process, to model the spread.
The spreads for the static OLS and TLS as shown below are not

seen to be strongly mean reverting, this could be due to using static
hedge ratios and equilibrium values which have not fully adapted to
changing condition in the dynamics of the price series.

−0.4

−0.2

0.0

0.2

0.4

2014 2016 2018

security

Unweighted.OLS

Weighted.OLS

TLS

Spread series for static models

The spread for the expanding and rolling models as shown below
are shown to be strongly mean-reverting about 0, due to their ability
to quickly capture the changing dynamics of the price series.
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0.2

2014 2016 2018

security

Unweighted.Expanding.OLS

Weighted.Expanding.OLS

Unweighted.Rolling.OLS

Weighted.Rolling.OLS

Expanding.TLS

Rolling.TLS

Spread series for dynamic models

To test for stationarity of the spread which is a requirement for
the pairs trade to be effective, using a formal method, we use the
ADF test. For the spreads generated using the static hedge ratios, the
p vaues for the ADF test are all above 0.05(5%) except for the static
TLS, indicating that the static TLS spread is stationary at the 5% level.

Spread P value

Unweighted OLS 0.1400746

Weighted OLS 0.2555275

TLS 0.0462977

The spreads from the dynamic models, only spreads which exhibit
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stationarity at the 5% level for the ADF test are the rolling OLS, and
TLS, which we will proceed to use for actual trade generation.

Spread P value

Unweighted Expanding OLS 0.2159827

Weighted Expanding OLS 0.3003952

Unweighted Rolling OLS 0.0100000

Weighted Rolling OLS 0.0100000

Expanding TLS 0.1862421

Rolling TLS 0.0114211

From the above table, we therefore proceed with the spreads
which exhibit stationarity (at the 1% ADF level), which are the
spreads resulting from: Rolling OLS(both weighted and unweighted),
and Rolling TLS.14 14 We will also trade the static TLS

spread, and show its trade statistics.

The Ornstein-Uhlenbeck process

The OU process is a continuous time stochastic process commonly
used in finance to model a mean-reverting process whereby a process
is said to follow the OU process if its stochastic differential equation
is of the form

dXt = κ(θ − Xt)dt + σdBt, f or dX2
t = σ2dt

where
dXt : The process increment between time t and dt
θ : The expected value of the process in the long run, and is as-

sumed constant. It is commonly referred to as the drift component.
κ : The speed of reversion of the process towards its long term

expected value and is assumed constant.
dt : An infintesimal increase in time t
σ, (σ > 0) : Instantaneous diffusion term of the process, which is

used to measure volatility and is assumed constant.
dBt : Increment in interval (t, t + dt) of a standard Brownian mo-

tion, under a probability measure P and is distributed as a N(0, t)
random variable.

Solving the SDE15, we obtain that the mean reverting process Xt : 15 Stochastic Differential Equation

Xt ∼ Normal(X0e−kt + `(1− e−kt),
œ2

2ˇ
(1− e−2ˇt))

such that:

E(Xt) = X0e−kt + θ(1− e−kt)
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Var(Xt) =
σ2

2κ
(1− e−2κt)

Since our spreads are mean-reverting process, we utilize the OU-
Process to model the resulting spreads from each model above, and
obtain the following:

• The long-term mean

• The long-term variance

• The half life of mean reversion

• The speed of mean-reversion

The four components would be useful in signal generation and
trading rules. To obtain the above statistics, we use the fact that the
OU-process can be thought of as a continuous time AR(1) process,
where the discretized version of the OU-process is shown below.

The limiting distribution of the OU-Process Xt has a mean and
variance as shown below:

lim
t→∞

E(Xt) = lim
t→∞

[X0e−kt + θ(1− e−kt)] = θ

lim
t→∞

Var(Xt) = lim
t→∞

[
σ2

2κ
(1− e−2κt)] =

σ2

2κ

The half life of mean reversion which is the distance half way be-
tween the mean of the long-term mean of the process and the current
value of the spread series, we compute it as shown below:

Recall dXt = κ(θ − Xt)dt + σdBt, f or dX2
t = σ2dt

where E(Xt) = X0e−kt + θ(1− e−kt), the half way point is therefore:

X0 +
θ − X0

2
We therefore need to find h so that:

E(Xh) = X0 +
θ − X0

2
thus:

X0e−κt + θ(1− e−κt) = X0 +
θ − X0

2

e−κh(X0 − θ) + θ =
θ − X0

2

e−κh(X0 − θ) =
−2θ + 2X0 + θ − X0

2

e−2κh =
1
2

, taking log
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h =
ln(2)

κ
Therefore the half life of mean reversion only depends on κ the speed
of mean reversion. It is important to note that, the higher the speed
of mean reversion, the shorter the period needed for the mean to
reach the midway point between the current value of the process and
its long term mean, thus for a pairs trade, we would want the half-
life of mean reversion to be shorter, since longer time periods could
result to losses.

Given all the information upto time t − 1 Ft−1, we can discretize
the exact analytical solution of the OU Process, to be as shown below:

Xt = Xt−1e−κ∆t + θ(1− e−κ∆t) + σ

√
1

2κ
(1− e−κ∆t)εt, εt ∼ N(0, 1)

We further simplify it to:

Xt = Xt−1e−κ∆t + θ(1− e−κ∆t) + εt, εt ∼ N(0,
σ2

2κ
(1− e−κ∆t))

Based on the above equation, we consider the OU Process as a
continuous-time version of the discrete time AR(1) Process of the
form:

Xt = α + βXt−1 + εt

where:
α = θ(1− e−κ∆t)

β = e−κ∆t

SE(Standard error) = σ
√

1
2κ (1− e−κ∆t)

We therefore regress the process current spread value against
its previous lag value, to obtain the regression parameters for the
AR(1) model: β0, β1, and map them back to the parameters of the
OU-Process. For an AR(1) model of the form:

Xt = β0 + β1Xt−1 + εt

we obtain the parameter for the OU Process as:

θ̂ =
β0

1− β1

κ̂ =
1

∆t
loge(

1
β1

)

σ̂ = SE

√
1− β2

1
2κ̂

For the spread series chosem above the OU-process statistics com-
puted are as follows:
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Mean(theta)
Reversion

speed(kappa)
Half

life variance

Static TLS -
0.0016624

0.0749272 9.250941 0.0014379

Unweighted
Rolling OLS

-
0.0000961

0.1683943 4.116215 0.0008636

Weighted Rolling
OLS

-
0.0000202

0.2239602 3.094956 0.0007839

Rolling TLS -
0.0017320

0.0981610 7.061333 0.0015461
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TRADE EXECUTION

In this section, we proceed to formulate rules for trading signals
based on the spread, its long term mean, variance and half life.
We consider the approach of an expanding horizon equi-distant 2-
standard deviation bands as used by several researchers such as in
(Gatev et al., 1993). We also consider the approach of using adaptive
bands, which utilize the concept of moving averages instead of the
constant average and standard deviation used in equi-distant bands.
This concept of moving bands is illustrated in (Vidyamurthy, 2004),
where he considers that in prescence of perfect cointegration, then
mean and variance are constant over time and thus using equi-distant
bands is sufficient, however in the presence of a mean drift16, since 16 When using the common trends

model to formulate the pairs trading
strategy,since the common factor/trend
component of the two assets are iden-
tical upto a scalar and will cancel
out in the case of perfect cointegra-
tion, then the overall portfolio spread
will equal the spread from the linear
combination of the stationary compo-
nents only, which will be stationary as
well, however when the cointegration
relationship is not perfect, then the
portfolio spread will also have a spread
from the trend components of the two
series, whose variance grows linearly
with time, this component is what is
termed as the mean drift

the variance might grow linearly with time, we use moving bands,
which will be more adaptive to the movements in the spread as op-
posed to the equidistant bands.17

17 We do not consider the approach on
using rolling-adaptive bands in this
study. For more on rolling-adaptive
bands, commonly called bollinger
bands, see Ernest P. Chan’s book

The mean drift component is illustrated as shown:
Considering two securities A and B, the returns from the portfolio

constructed under the common trends model is given below:

rA = rc f
A + rspec

A

rB = rc f
B + rspec

B

Constructing a portfolio where we LONG 1 unit of A and SHORT
β units of B, we obtain the portfolio: rA − βrB.

This is equivalently written as:

rA − βrB = (rc f
A − βrc f

B ) + (rspec
A − βrspec

B )

Thus when the common factor component are not identical upto the
scalar β as in the context of perfect cointegration, then the portfolio
spread becomes:

spreadport f olio = spreadc f + spreadspec

So that if the spreadc f is non-stationary, then the overall portfolio
spread equals the specific spread(which i stationary) with a stochas-
tic drift to its mean value(due to spread from the common factor
component, this would violate the cointegration condition on spread
stationarity.

In the abscence of perfect cointegration, (Vidyamurthy, 2004) com-
putes a statistic called the SNR18 ratio, which would be a measure of 18 Signal-To-Noise

whether a pair is still tradable, when the cointegration conditions are
violated.

www.epchan.com


statistical arbitrage in the nse 23

SNR =
σ2

st
σ2

non−st

where:
σ2

st : Variance of the stationary spread
σ2

non−st : The variance of the non-stationary component of the
spread, the common factor spread.

If we have the non-stationary variance as close to zero as possible,
then the SNR is large, which would mean higher signal-to-nosie ratio
and thus a better fit for tradability.

For our pair DTK~IMH during the trading period, the SNR is:
2.5164, whereby an SNR above 1 is considered good for tradability
purposes.

For the four spread series, the trading cumulative profit and loss
is illustrated below, where we open positions when the spread de-
viates past the two standard deviation mark, and exit the trades on
reversion to mean.
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Weighted.Rolling.OLS

Rolling.TLS

Cumulative PnL for the spreads

The summary statistics for the three rolling strategies are shown
below:

Static
TLS

Unweighted
Rolling OLS

Weighted
Rolling OLS

Rolling
TLS

Annualized
Return

0.1147 0.7652 0.7208 0.7364

Annualized Std
Dev

0.5268 0.3993 0.3615 0.5447

Annualized
Sharpe (Rf=0%)

0.2177 1.9164 1.9939 1.3520

To benchmark the performance of the three rolling pairs strategies,
we benchmark the strategies using the NSE All Share Index, which is
a market proxy and benchmark in the Nairobi Securities Exchange.
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Static
TLS to
NASI

Unweighted
Rolling OLS to

NASI

Weighted
Rolling OLS

to NASI

Rolling
TLS to
NASI

Alpha 0.0010 0.0025 0.0023 0.0028

Beta -0.0086 0.1265 0.1008 0.0336

Beta+ 0.0140 0.1457 0.1172 0.0428

Beta- -0.0129 -0.0055 0.0044 0.0285

R-
squared

0.0000 0.0099 0.0077 0.0004

Annualized
Alpha

0.2854 0.8641 0.8011 1.0048

Correlation -0.0051 0.0997 0.0877 0.0194

Correlation
p-value

0.8715 0.0016 0.0056 0.5399

Tracking
Error

0.6154 0.4834 0.4582 0.6241

Active
Premium

-0.0411 0.6103 0.5658 0.5815

Information
Ratio

-0.0668 1.2626 1.2348 0.9318

Treynor
Ratio

-13.3532 6.0484 7.1536 21.8915

From the above statistics: the un-weighted rolling OLS performs
better in terms of annualized returns and Sharpe-ratio as compared
to the weighted rolling OLS, TLS AND static TLS. The four spreads
trading strategies have excess returns(alpha) above the NASI19. It 19 NSE All Share Index

is also evident that the strategies are “market neutral” both overall-
ly(beta) and in bull(beta+) and bear(beta-) markets, since the beta20 is 20 An assets’s/strategy’s beta is the

measure of the strategy’s/asset’s
market risk, and is usually obtained by
regressing the asset’s returns with the
market returns. A beta equals 0 implies
little-to-no market risk, hence the term
“market-neutral”

almost 0.
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CONCLUSION

The study compares various hedge-ratio construction methods based
on regression analysis, using stocks listed in the NSE. The framework
used which starts from pairs selection, then spread modelling and
finally trading rules was used throughout this study. The static hedge
ratios computed using a one-time regression do not appear to be
stationary except in the case of TLS, and are thus eliminated during
the trade backtesting. Of the four spread series, the un-weighted
rolling OLS performs the best with 76% returns. It should however
be noted that the high returns could diminish a bit when transaction
costs and slippages are accounted for.

This study also concludes that indeed the returns generated from
the pairs trade are market neutral, when compared to the NSE All
Share Index.

Therefore, we conclude that in the Nairobi Securities Exchange,
statistical arbitrage opportunities indeed exist, and could be exploited
profitably by arbitrageurs who seek arbitrage opportunities, hedgers
who seek to hedge their trading positions, and speculators who bet
on mean-reversion aspect of spreads between stocks.
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RECOMMENDATIONS

Future work on the statistical arbitrage on NSE should try incorpo-
rating other methods of computing hedge ratios, such as the ratio
based approaches and kalman-filtering approaches.

Future work on statistical arbitrage in NSE should also try trading
this strategy in the futures markets, and commodity markets.

Future work on the same should study more trading rules such as
optimal entry and exits and comparison to a simple entry and exit
strategy, to see if the results are significantly different.

Future work on statistical arbitrage in the NSE should study pos-
sible inter-global markets cointegration, by investigating pairs which
span across different markets, and studying if profitable trading is
possible.

Future work on statistical arbitrage in the NSE should study possi-
bility of constructing such portfolios using Exchange Traded funds.
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