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Introduction

High-dimensional data is the type of data1 which is characterized 1 Also known as wide data

by the presence of many variables2. Due to the growing nature of 2 potentially where the number of
variables(p) is greater than the number
of observations in the sample(n) i.e. p >
n.

variables of interest and data collection over the past years in diverse
domains such as health-care/medicine, marketing, finance etc., there
is an increasing need for techniques which are able to thrive in situa-
tions where the number of variables is higher, and at times even more
than the number of data points available to train the model.3 3 For most Machine Learning algo-

rithms, data at hand is usually of the
form n >> p, i.e. the number of data
points(n) used in training the model
is far higher than the number of pre-
dictors(p) in the data. However for
high dimensional Machine Learning,
the number of predictors(p) is usually
very large, and at times more than the
sample size(n), which poses a problem
for most Machine Learning models.

Examples of problems common in high dimensional learning
include the following:

Predicting consumer behavior and patterns in online-shopping
stores, where the variables of interest, could be all search terms en-
tered by the consumer, the click history, previous purchases and
declines, demographic characteristics, and search account history. In
such a problem, while the number of predictors for online behavior
are many, we typically only have a few customer information.

Signal generation, and price prediction in finance. In this domain,
the variables of interest are usually: technical indicators of the price
series such as the moving averages, volatility, etc, the fundamental
indicators such as market capitalization and several accounting ra-
tios, analyst ratings, social media sentiment etc. In this domain too,
the number of historical data points used to train models is often
limited4, however the number of predictors keeps growing. 4 at least not for high-frequency trading

domainIn medicine, a problem of interest is to predict whether given
tumors are benign or malignant, where variables would include
a number of characteristics of cells e.g. perimeter, concavity, area,
smoothness etc and other variables about the patient such as patient’s
demographic characteristics, lifestyle characteristics etc. The charac-
teristics could be so many, yet the number of patients, for which we
have data could be few due to patients leaving studies/treatment.

The challenges associated with learning in high dimensions, re-
quire specialized techniques suited to such data since common statis-
tical learning methods such as least squares fail in such dimensions.
Potential dangers encountered when working with high-dimensional
data include:

1. Multi-collinearity: In the presence of a high number of predic-
tors, the possibility of more than one pair of predictors being
highly correlated increases, and this poses a challenge termed
multi-collinearity in the data.5 Several machine learning models 5 Multi-collinearity refers to situations

in which there are several predictors
which are significantly correlated

become unstable in the presence of multi-collinearity such as Neu-
ral networks, support vector machines etc, while some of them
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may break down completely such as multiple linear regression.
Multi-collinearity introduces redundancy in model fitting, since
two or more predictors attempt to explain the same variability in
the response.

2. False positive discoveries: In high dimension data, the probability
of finding one or more predictors which are significantly related
to the response due to random chance and not due to a true rela-
tionship increases, which leads to the problem of false discoveries.
Such false positive findings often decrease a model’s performance
and hurt model interpretability.
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Figure 1: An example of a dataset with
two predictors, and two observations.
(n = p = 2)
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Figure 2: An example of a dataset with
(n = p = 9) using polynomial regression
(degree 9)

3. Over-fitting: In high dimensional data, where n = p or n > p,
then over-fitting is likely to occur. In this scenario, the models fit-
ted have n degrees of freedom. This is illustrated in the following
example: Suppose we have a sample of 2 data points, and one
variable of interest(together with an intercept) i.e. n = p, then fit-
ting a linear regression model results in a perfect fit (all residuals
become 0), however such a model may fail to generalize to previ-
ously unseen data(test data). This shows that in high dimensional
learning, it is possible for models to perfectly fit the training data,
and perform poorly in previously unseen data. In such cases, the
training error is a poor approximation of test error rate.

4. Common performance metrics for models also fail in the high di-
mensional case, such as the R2, Adjusted− R2 etc. This is because,
for metrics such as R2, increasing the number of variables (p) in
the model, almost always increases the R2 even when the vari-
ables have no significant relation to the response6. Consequently,

6 An example of an illustration showing
what happens to a model when more
variables which have no significant
relationships to the response are added
to the model. It is evident how adjusted
R-squared almost always increases as
the number of predictors increases, the
training error always decreases as more
predictors are added to a model due to
possible over-fitting, but the test error
increases, since the increased number of
predictors add no predictive power to
the model.

possible collinearity among the predictors causes the tests of sig-
nificance in models to be biased.
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Models for high-dimensional data

Due to the above-mentioned challenges, this study seeks to investi-
gate models suitable for high-dimensional learning in the context of
regression and classification.

In modelling high-dimensional data, it is of interest to identify
variables and interactions which have a significant relationship to
the response variable, and discard those which have no significant
relationship. This leads to dropping some variables in the analysis in
favor of others (by setting their coefficients in the model to 0), a technique
commonly called feature/variable selection, or shrinking their coeffi-
cients in the model towards 0, a technique termed shrinkage. In this
study, the models used for shrinkage and variable selection are the
Ridge and LASSO regression respectively. Both ridge and LASSO re-
gression are commonly called Penalized regression models and are also
referred to as regularization techniques since they control for possible
over-fitting in models.

Due to the ‘wide’ nature of data in high-dimensional settings,
it is of interest to an analyst, to find a small subset of predictors,
which have the most significance relation to the response. This can be
achieved by transformations for reducing the dimensionality of the
predictor space into a much smaller dimension, a technique known
as: dimensionality reduction. The aim of the these methods is to
find a subset of predictors, from the original predictor space, in such
a manner that the high-dimensional problem is reduced to a low-
dimensional one. It is important to note that: since the subset of
predictors is constructed in such a way, that there is no correlation
among the new subset of predictors, the issue of multi-collinearity is
also solved. In this study we investigate the following dimensionality
reduction techniques: Principle Components analysis, Kernel Prin-
cipal Components analysis, Independent component analysis, and
Partial least squares.

Penalized regression methods

Ridge regression

This is a shrinkage based method for regression (suitable for p > n
data), which aims to supplement the Ordinary Least Squares method,
especially in the context of high multi-collinearity.

Recall, that for the orindary least squares model of the form:

y = β0 + β1x1 + β2x2 + ... + βpxp + εt
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The error function is of the form:

Q = ∑ (yi − ŷi)
2

where : ŷi = β0 + β1x1 + β2x2 + ... + βpxp

In slving for the coefficients of regression, we obtain the following
closed-form solution:

β = (XTX)−1(XTY)

However, in the prescence of many predictors, there is the ever-
present risk of multi-collinearity, and thus the (XTX) matrix will
not be of full rank, and hence not invertible. This in turn makes the
coefficients of the regression model to grow large and unstable.

A work around is to change the error function of the regression
model to be:

QL2 = ∑ (yi − ŷi)
2 + λr ∑ β2

j

This choice of error function, has the advantage that the error func-
tion remains a quadratic function of the regression coefficients, and
its exact closed-form solution can be obtained by equating the gradi-
ent of the error function to 0, and solving for β to obtain:

β = (XTX + λI)−1(XTY)

The λ is called a penalty term or regularization coefficient, and this
technique is called ridge regression. The penalty term must increase
when the coefficients grow large, in order to enforce minimization.
In result, the penalty causes the regression coefficients to become
smaller and shrink towards 0, this makes the model much inter-
pretable.

This particular choice of regularizer is known as weight decay in
machine learning, or parameter shrinkage in statistics, since it has the
tendancy to shrink parameter values towards 0

LASSO regression

A different choice of the regularizer could be obtained using the
following error function:

QL1 = ∑ (yi − ŷi)
2 + λL ∑ |β j|

This method is called: Least absolute shrinkage and selection operator:
(LASSO). In modifying the error function to include the regularizer,
lasso regression forces some regression coefficients to be 0, and in
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doing so, it practically selects model terms to an optimal number of
predictors. This makes it a feature selection model.

The advantage of the LASSO regression over ridge regression
is that: although ridge regression shrinks parameter estimates to-
wards 0, it does not lead to any parameter estimates being 0, hence
for the ridge regression, all (p) predictors are included in the model
(which might hurt model interpretability). However, for the LASSO re-
gression, the nature of its regularizer ensures that some parameter
estimates are set to 0, hence effectively eliminating them from the
model. Hence the LASSO regression has he advantage of produc-
ing simpler interpretable models than ridge regression. It should be
noted however that this does not hurt the predictive ability of the
ridge regression model.

Elastic-Net Regression (Combining Ridge and LASSO regression)

Since ridge regression has the advantage of combating multi-collinearity,
and the LASSO regression has the advantage of being a feature/variable
selection model, the two models can be combined, in order to deal
with both multi-collinearity, and feature selection at once.

The form of the error function of model is shown below:

Q = ∑ (yi − ŷi)
2 + λ[(1− α)∑ β2

j + α ∑ |β j|]

Here, λ = λr + λL , and the proportion of λ associated with the lasso
is denoted α. Thus, selecting α = 1 would be a full lasso penalty
model, selecting α = 0 would be a full ridge regression model,
whereas α = 0.5 is an even mix of a ridge and lasso model.

Search for optimal λ

The optimal value of λ for the ridge and LASSO regression model is
found by means of cross-validation, where several choices of λ are
used on the training set, and the performance of the models are eval-
uated on a validation set,so that the value of λ which yields the least
training error, is preferred. For Elastic-Net regression, a common
method of selecting the best regularization coefficient, is to construct
a grid of α values, and for each value of α, the best regularization
coefficient λ is found. The fitted models are then compared based on
validation error.
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Dimensionality Reduction methods

Dimensionality reduction methods are useful in reducing the di-
mensionality of datasets, from a high-dimensional space to a low
dimensional space, for a number of reasons:

• High-dimensional data increases computation time in model fit-
ting

• High-dimensional data is often plagued with highly correlated
variables.

These challenges above necessitate, finding only a small subset
of predictors which summarize maximal variability in the original
predictor space significantly. Such methods include:

1. Principal Components Analysis (PCA)

2. Kernel Principal Components Analysis (K-PCA)

3. Independent Component Analysis (ICA)

4. Partial Least Squares (PLS)

5. Non-negative matrix factorization (NNMF)

All the techniques listed above work by taking an input matrix X,
which is an n ∗ p matrix, and return a matrix of scores (often called
components), which are combinations of the columns of the original
data matrix.

It is however important to note that PCA, K − PCA, ICA, NNMF
are unsupervised techniques, and their aim is to reduce the number of
predictors into a subspace of predictors, with the hope that the new
subset of predictors will be significant in explaining the variability
in the response, although this is not always the case. Their aim is
to reduce the predictor space into a smaller subset with the aim of
reducing computation time and possible multi-collinearity, but not
necessarily improve predictive performance.

The PLS technique is a supervised technique, in that it performs
dimensionality reduction, while ensuring that the subset of predic-
tors obtained is significantly related to the response variable. Thus,
when using PLS, there is some guarantee of improving predictive
performance, while reducing computation time in model fitting.

In this article, we will not cover the non-negative matrix factoriza-
tion method.
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Principal Components Analysis

Recall that, for a data matrix A, and an
identity matrix I, the eigen values are λ
such that:

|A− λI| = 0

The corresponding eigen vector v̂, of an
eigen value λ satisfies the equation:

(A− λI)v̂ = 0

Principal Components Analysis (PCA) is the most popular dimen-
sionality reduction method. The aim of PCA is to find a subset of
predictors, which is esentially a linear combination of the original
predictor space, such that the combinations explain maximal variabil-
ity of the original predictor space.

In PCA, the new features formed7, are usually orthogonal to 7 Often called scores or components

each other8. This makes it a very useful tool in dealing with multi- 8 Implying they’re uncorrelated, and
thus there is minimal overlap in the
information provided by each score

collinearity.
We consider an n ∗ p centered data matrix X, where n is the num-

ber of observations, and p is the number of predictors. We then cre-
ate a p ∗ p matrix, whose columns are eigen vectors of (XTX).

The matrix W is the matrix of unit eigen vectors. In constructing
W, we usually ensure that eigen vectors are ranked by the highest
eigen value i.e. components with the highest explanatory power come
first. It follows that W is orthogonal, i.e. WT = W−1

The principal components decomposition P of X is then defined
as: P = XW

A popular application of principal components analysis is principal
components regression, where the predictor matrix is first reduced into
a matrix of scores using PCA, and this matrix of scores is then fed
into regression.

Kernel Principal Components Analysis

Recall that PCA is useful in forming component by extracting linear
combinations of predictors from the original predictor space, hence it
is useful only when there are linear patterns in the predictor space.

But supposing that, the functional form of the data at hand is
given by the following equation below:

y = x1 + x2 + x2
1 + x2

2 + εt

Then, using PCA will only construct linear combinations of x1

and x2, thus missing out the important quadratic relationships in the
data.

Thus in the presence of possible non-linear relationships in the
data, Kernel-PCA is better suited.

K-PCA extends PCA using kernel methods, so that for linear com-
binations of variables, K-PCA captures this using the linear kernel:

k(x1, x2) = xT
1 x2

Although the linear kernel could be substituted using any other
kernel of choice, such as the polynomial kernel:
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k(x1, x2) =< x1, x2 >d

so that for quadratic relationships, we set d = 2:

k(x1, x2) =< x1, x2 >2= (x11x12 + ... + xn1xn2)
2

Independent Components Analysis

Recall, PCA forms scores using linear combinations of the original
predictor space such that the new scores formed are orthogonal with
each other, and thus uncorrelated, however this does not mean that
the scores are statistically independent of each other.9 9 This is because in certain cases, the

correlation could be 0, however the
covariance could be indicating other-
wise, except in cases where data comes
from the gaussian distribution, where
un-correlation implies independence.

ICA bears some similarity with PCA10, however in creating the

10 It should however be noted that
scores generated by ICA are different
from PCA scores

scores, it does so in a way that the scores are statistically independent
of each other. Generally, ICA tends to model a broader set of trends
than PCA, which is only concerned with orthogonality.

Given a random observed vector X,whose elements are mixtures
of independent elements of a random vector S given by:11

11 Both X and S are vectors of length m

X = AS

Where A denotes a mixing matrix of size m ∗m, the goal of ICA is
to find the un-mixing matrix W12, that will give the best approxima- 12 An inverse of the mixing matrix A

tion of S

WX ≈ S

ICA makes the following assumptions about data:

1. Statistical independence in the source signal

2. Mixing matrix must be a square matrix of full rank.

3. The only source of randomness is the vector S.

4. The data at hand is centered and whitened.13 13 Centered data is data which has
been demeaned, and whitening could be
achieved by first running PCA on the
original data and using the whole set of
components as input data to ICA

5. The source signals must not have a gaussian distribution except
for only one source signal.

ICA constructs scores based on two methods:

• Minimization of mutual Information

For a pair of random variables X, Y, the mutual information is
defined as follows:

I(X; Y) = H(X)− H(X|Y)
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Where:
H(X): is the entropy of X.

H(X) = −∑
x

P(x) log P(x)

H(X|Y): is the conditional entropy.14 14 The entropy of X conditional on Y
taking a certain value y

H(X|Y) = H(X, Y)− H(Y)

where:
H(X, Y): is the joint entropy given by:

H(X, Y) = −∑
x,y

P(x, y) log P(x, y)

From the above equations, entropy can be seen as a measure of
uncertainty of information in a random variable, so that the lower the
value of entropy, the more information we have about the random
variable of interest. Therefore by seeking for a method of maximizing
mutual information, we would be seeking for components which are
maximally independent.

• Maximization of non-gaussianity.

This is a second method of constructing independent compo-
nents. Since in the assumptions underlying ICA, is the assumption
of non-gaussianity of the source signals, then, one way of extracting
components is to maximize non-gaussianity of the components.15. 15 Forcing the components to be as

far as possible from the gaussian
distribution

An example of a non-gaussianity measure is the Negentropy, given
by:

N(X) = H(XN)− H(X)

Where:
X: is a random non-gaussian vector.
XN : is a gaussian random vector with same covariance matrix as

X.
H(.): is the entropy.
Sice the gaussian distribution has the highest entropy for any

given covariance matrix,then the negentropy: N(X) is a strictly posi-
tive measure of non-gaussianity.

Partial Least Squares

Partial Least Squares (PLS) is a supervised dimensionality reduction
method, in that the response variable is used in guiding the dimen-
sionality reduction process unlike in the context of PCA. Hence in
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constructing the components, PLS does so in a way that the compo-
nents not only summarize maximal variability in the predictor space,
but also are related to the response significantly.

Given p predictors: X1, X2, ..., Xp, and the response variable Y, we
construct linear combinations of our original predictors: Z1, ..., Zm, m <

p, components:

Zm =
p

∑
j=1

φjmXj

Where: φjm: are some constants. In computing the first PLS direc-
tion Z1, PLS sets each φj1 equal to the coefficient from a simple linear
regression of Y onto Xj

16, hence it is evident that PLS places larger 16 It can be shown that this coefficient is
proportional to the correlation between
Xj and Y

weight on variables which are highly correlated to the response vari-
able. The second PLS direction is first computed by taking the resid-
uals after regression each variable on Z1

17. The second PLS direction: 17 The residuals are interpreted as:
amunt of information that has not been
accounted for by the first PLS direction

Z2 is computed using the orthogonalized data in the same fashion as
Z1, and this procedure is repeated to obtain the m PLS components.

Data

The data used in modelling is a financial dataset aimed at using vari-
ous statistical and financial metrics to predict the return for quarterly
returns data for a selected stock price series. The dataset is com-
prised of 78 numerical predictor variables(statistical and financial
metrics), and a response variable18. The dataset is constructed us- 18 The return for a particular quarter

in the regression setting, and the
Direction(i.e. whether there was a
rise/drop in the quarterly return), in
the classification setting

ing the metrics from the package PerformanceAnalytics in R, and
using the return series of KCB Group from the period 1st January
2001, to 31st January 2021. The financial benchmarking metrics are
computed using FTSE NSE 20

19 as the benchmark. The nature of the 19 A price weighted portfolio of 20 best
performing counters in the Nairobi
Securities Exchange as the benchmark

dataset makes it impossible to fit a standard Multiple Linear Regres-
sion model, or even a Generalized Linear Model(GLM) to the data
(since p(78) >> n(64), in the training dataset). A glimpse of the first
49 variables present in the data are shown below:20 20 Note that the variable Direction, which

is the response variable in the classi-
fication setting is not included in the
glimpse of the data. It is a binary vari-
able constructed from the differenced
Annualized Return variable, such that
if the change in return is Negative, the
Direction is DOWN indicating that the
stock dropped in terms of quarterly
returns, otherwise, the Direction is
UP, indicating that the stock quarterly
return rose, from the previous quarter.
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2001//2 ... 2020//4

Annualized Return 0.0294000 ... -0.7567000

Annualized Std Dev 0.6393000 ... 0.1417000

Annualized Sharpe (Rf=30.48%) -0.2063000 ... -2.8019000

rho1 0.0151000 ... 0.3624000

rho2 0.2120000 ... 0.0839000

rho3 -0.0593000 ... -0.1306000

rho4 0.0193000 ... -0.1439000

rho5 0.0444000 ... -0.1711000

rho6 -0.0601000 ... -0.2266000

Q(6) p-value 0.7102000 ... 0.0069000

daily Std Dev 0.0403000 ... 0.0089000

Skewness 1.2874000 ... 0.2103000

Kurtosis 12.6280000 ... 3.8876000

Excess kurtosis 9.6280000 ... 0.8876000

Sample skewness 1.3500000 ... 0.2205000

Sample excess kurtosis 10.5247000 ... 1.0610000

Semi Deviation 0.0263000 ... 0.0061000

Gain Deviation 0.0382000 ... 0.0065000

Loss Deviation 0.0298000 ... 0.0059000

Downside Deviation (MAR=40%) 0.0267000 ... 0.0072000

Downside Deviation (Rf=30.48%) 0.0265000 ... 0.0070000

Downside Deviation (0%) 0.0260000 ... 0.0063000

Maximum Drawdown 0.2796000 ... 0.0946000

Historical VaR (95%) -0.0482000 ... -0.0151000

Historical ES (95%) -0.0849000 ... -0.0186000

Modified VaR (95%) -0.0414000 ... -0.0142000

Modified ES (95%) -0.0414000 ... -0.0182000

daily downside risk 0.0267000 ... 0.0072000

Annualised downside risk 0.4235000 ... 0.1145000

Downside potential 0.0120000 ... 0.0043000

Omega 0.9251000 ... 0.5485000

Sortino ratio -0.0338000 ... -0.2707000

Upside potential 0.0111000 ... 0.0024000

Upside potential ratio 0.7519000 ... 0.7749000

Omega-sharpe ratio -0.0749000 ... -0.4515000

Sterling ratio -0.0598000 ... -0.4983000

Calmar ratio -0.0812000 ... -1.0249000

Burke ratio -0.0842000 ... -1.2829000

Pain index 0.1874000 ... 0.0511000

Ulcer index 0.2195000 ... 0.0548000

Pain ratio -0.1296000 ... -1.9282000

Martin ratio -0.1107000 ... -1.7996000

Minimum -0.1264000 ... -0.0231000

Quartile 1 -0.0149000 ... -0.0054000

Median 0.0000000 ... 0.0000000

Arithmetic Mean 0.0007000 ... -0.0004000

Geometric Mean -0.0001000 ... -0.0004000

Quartile 3 0.0146000 ... 0.0041000

Maximum 0.2015000 ... 0.0243000

SE Mean 0.0050000 ... 0.0011000

LCL Mean (0.95) -0.0094000 ... -0.0026000

UCL Mean (0.95) 0.0107000 ... 0.0019000

StdDev Sharpe (Rf=0.1%, p=95%): -0.0129949 ... -0.1765017

VaR Sharpe (Rf=0.1%, p=95%): -0.0126389 ... -0.1106584

ES Sharpe (Rf=0.1%, p=95%): -0.0126389 ... -0.0865619

Alpha 0.0073000 ... -0.0010000

Beta 4.0468000 ... 0.5569000

Beta+ 11.4929000 ... 0.6488000

Beta- 2.4824000 ... 0.5098000

R-squared 0.1222000 ... 0.0964000

Annualized Alpha 5.2407000 ... -0.2196000

Correlation 0.3495000 ... 0.3104000

Correlation p-value 0.0046000 ... 0.0125000

Tracking Error 0.6221000 ... 0.1391000

Active Premium 0.1449000 ... -0.1316000

Information Ratio 0.2330000 ... -0.9462000

Treynor Ratio -0.0691000 ... -0.6005000

Beta CoVariance 4.0468000 ... 0.5569000

Beta CoSkewness -14.5580000 ... 0.5195000

Beta CoKurtosis 3.8377000 ... 0.8864000

Specific Risk 0.5943000 ... 0.1336000

Systematic Risk 0.2234000 ... 0.0440000

Total Risk 0.6349000 ... 0.1407000

Up Capture 6.2220000 ... 0.2129000

Down Capture 3.2021000 ... 0.4310000

Up Number 0.6538000 ... 0.3824000

Down Number 0.4118000 ... 0.5333000

Up Percent 0.6538000 ... 0.2353000

Down Percent 0.5882000 ... 0.6333000
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A chart of the correlation between the predictor variables is shown
below:
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Total Risk
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daily  Std Dev
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Semi Deviation
Specific Risk

Tracking Error
Downside Deviation (0%)

Downside Deviation (MAR=40%)
daily downside risk

Downside Deviation (Rf=30.48%)
Annualised downside risk

Upside potential
Gain Deviation
Loss Deviation

Systematic Risk
Downside potential

Maximum
Beta

Beta CoVariance
UCL Mean (0.95)

Maximum Drawdown
Quartile 3

Ulcer index
Up Capture

Annualized Alpha
Pain index

Down Capture
Alpha

Beta CoKurtosis
Up Percent
Up Number

Active Premium
Correlation
R−squared

Down Number
Sterling ratio

Beta+
Information Ratio

Beta−
Arithmetic Mean

Beta CoSkewness
Sortino ratio

Omega
Omega−sharpe ratio

Geometric Mean
Burke ratio

VaR Sharpe (Rf=0.1%, p=95%):
ES Sharpe (Rf=0.1%, p=95%):

Calmar ratio
Annualized Sharpe (Rf=30.48%)

StdDev Sharpe (Rf=0.1%, p=95%):
Treynor Ratio

Sample skewness
Skewness

rho1
rho2

Median
Martin ratio

Sample excess kurtosis
Excess kurtosis

Kurtosis
Pain ratio

rho3
Upside potential ratio

rho6
rho4
rho5

Q(6) p−value
Correlation p−value

LCL Mean (0.95)
Down Percent

Quartile 1
Modified ES (95%)

Minimum
Modified VaR (95%)

Historical VaR (95%)
Historical ES (95%)

It is evident that there exists (both positive and negative) high
correlation between the predictors, which poses a challenge if multi-
collinearity in the model fitting process. The high positive correlation
is visible in predictors which are related to measures of downside
risk, while the high negative correlation is evident between variables
which measure tail risk, and those which measure downside risk.
There is little to no correlation between variables which measure
central tendancy (mean and median returns, and their respective
ratios) and the variables which measure the riskiness of the returns
series.

For both models, the training and testing sets are constructed
from the data using simple random sampling of the original data, so
that 80% of the full dataset goes into training the models, while the
remaining 20% of the data goes to the testing data. For the classifica-
tion model, the resulting subsets are analyzed to ensure that there is
class balance in the response variable.

The key reason we randomize the data, when splitting into train-
ing and testing set, is because, for the purpose of this analysis, we are
not interested in the temporal structure of the data.
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In the regression setting, the predictor variables are lagged by one
time period, so that the financial metrics of of quarter i − 1 are used
in predicting the return for quarter i. In the classification setting,
since the Direction variable is automatically lagged, we back-shift it,
so that, the financial metrics of quarter i − 1, are used in predicting
the Direction of the next quarter i. This is necessary since, it helps us
in mitigating look-ahead bias.

Models

Regression model (I)

Ridge Regression
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Figure 3: Cross validation statistics for
estimating the regularization parameter
of ridge regression, and their error
bars. The dotted line represent estimate
of lambda which is within its one
standard error

We proceed to fit ridge regression on the data, and select the regu-
larization parameter using cross-validation21. The cross validation

21 The best estimate for λ using cross
validation was found to be: 12.75054

statistics are shown below:
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Distribution of model coefficients: (Ridge−CV)

The model fitted using the regularization parameter obtained by
cross validation (Ridge CV), has roughly 70% of the model coefficients
shrunken to be close to 0, showing how effective ridge regression is
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in producing interpretable models.

LASSO Regression

We proceed to fit LASSO regression on the data, and select the reg-
ularization parameter using cross-validation22. The cross validation 22 The best estimate for λ using cross

validation was found to be: 0.1893415.statistics are shown below:
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Figure 4: Cross validation statistics for
estimating the regularization parameter
of LASSO regression and their error
bars. The dotted line represent estimate
of lambda which is within its one
standard error
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The model fitted using the regularization parameter obtained from
cross validation as shown above has forced majority of the model
coefficients to be 0, thereby removing the variables from the model.
The LASSO regression technique is therefore important in variable
selection, since by setting some model coefficients to 0, it effectively
removes them from the model, leaving us with a much smaller and
interpretable model.

Elastic Net Regression

In this section, we fit an Elastic Net model, which is a mixture of both
ridge and LASSO regression. We select the mixing-weight based on
two methods:

1. We compute the model regularization parameter λ, as a sum of
the cross validation value of λ computed in ridge regression, and
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that computed from LASSO regression. i.e.

λ = λR + λL

We then run a cross validation using this fixed λ on several values of
α, and obtain the statistics as shown in the following chart:
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2. In this second method, we construct a grid of α values which are
equally spaced on the range [0, 1], and for each αi, we perform
cross validation on the training set to obtain the most suitable
value of the regularization parameter λi.23 The result is shown 23 This is the most suitable technique to

use in Elastic-Net regression.below:24

24 Cross validation is performed to
determine the best value for the reg-
ularization coefficient for every value
of alpha chosen. The value of alpha
= 0.386387387, and the corresponding
lambda = 0.1106008, gave the lowest
training error(0.4), as well as the highest
deviance(37%), using only 19 non-zero
model coefficients.
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From the above chart, it shows that, as the value of α increases,
then the regularization parameter λ reduces, which shows that for
this model, a very small proportion of λ was attributed to the LASSO
penalty. The deviance resulting from this is quite low (less than 30%).
The training error, as well as the deviance are suitable for small val-
ues of alpha chosen. For the Elastic Net regression, we will proceed
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with this 2nd model hyper-parameters, since it gives a lower training
error, for few variables, as compared to the rest.

Principal Components Regression
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Figure 6: It is evident that PCA con-
structs components in a way that they
are orthogonal to each other and hence
not correlated. This helps in dealing
with the multi-collinearity present in
the data.

In this section, Principal components analysis model is fitted using
only 56 principal components and the results of the Principal Compo-
nents Regression are displayed.
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From the scree-plot above, it is evident that the first two com-
ponents account for maximal variability in the predictor matrix. In
choosing the suitable number of components to run regression with,
we examine the plot of cross-validation error below:
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From the validation plot using RMSE as the error metric, the
model with the lowest cross validation error is the 2-components
model, which we will proceed with.

Kernel Principal Components Regression
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Figure 7: It is evident that k-PCA
constructs components in a way that
they are orthogonal to each other and
hence not correlated. This helps in
dealing with the multi-collinearity
present in the data.

In this section, the Kernel-PCA is first performed on the predictor
matrix, and then the most optimal subset of the resulting components
constructed is used to fit a linear regression model on our training
dataset. For the Kernel-PCA, we chose a radial basis kernel, where
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the hyper-parameter σ was chosen automatically based on our data. The estimated value of σ, is based upon
the 10%, and 90% quantile of ||x− x‘||2,
where we chose σ as the median value
of: 0.008732801.

The charts below show the percentage variability in the original
predictor matrix explained by the resulting kernel principal compo-
nents:
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From the scree plot on chart 1, it is evident that the first 4 kernel
principal components explain maximal variability in the original
predictor matrix. The cross validation training error increases as
more components are added into the model. In selecting the optimal
number of principal components to include in the model, we select
10 components, since this gives the highest amount of variability
explained in the response variable.

Partial Least Squares
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Figure 8: It is evident that PLS also
constructs components in a way that
they are orthogonal to each other and
hence not correlated. This helps in
dealing with the multi-collinearity
present in the data.

This section covers the analysis section for the partial least squares
model. The PLS model is fitted using cross-validation, and the data is
centered and scaled before the model fitting process.

The scree-plot for the PLS model is shown below
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The above chart shows that the first 4 components explain majority
of the variability in the original predictor matrix (roughly 70%). The
Training error from cross validation is shown below:
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From this chart, we select only the first component, to include in
our final PLS model, since it gives the lowest cross validation error. A
comparison of the variability in the response explained by the PCR
and PLS model is shown below, in order to capture the difference
between PLS and PCR.

To examine the difference between PLS and PCA in explaining
the response variable, we examine the (%) variance explained in the
response by each component as shown below:
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From the chart above, it is evident that for any number of principal
components, the PLS explains the highest variability in the response
variable, since it is a supervised dimensionality reduction technique,
where the response variable guides the reduction process, as com-
pared to the PLS which is an unsupervised technique.

Independent Components Analysis
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Figure 9: It is evident that ICA also
constructs components in a way that
they are STATISTICALLY INDEPEN-
DENT to each other and hence not
correlated. This helps in dealing with
the multi-collinearity present in the
data.

This section gives a summary of the analysis performed using Inde-
pendents Components Analysis. For the ICA, only 30 independent
components are constructed. Results from the cross validation analy-
sis performed on ICA features is shown below:
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Based on the cross validation plots, we proceed with an regression
model fitted with only the first ICA components.
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Comparison of models

In this section, we compare all models fitted on the testing data. We
use the mean squared error to gauge the best models.

model Training.error Testing.error
Ridge(CV) 0.5524857 0.4890077

LASSO(CV) 0.5690525 0.4767853

Elastic-Net 0.4072456 0.4338640

PCR 0.5830379 0.5439550

PLS 0.5536653 0.5070605

k-PCA 0.3623230 0.4342610

ICA 0.6424859 0.4966551

The charts on performance are shown below:
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From the above charts and statistics, it is evident that the Kernel
PCA, and Elastic-Net regression model emerge the best, and their
performance in both the training set and testing set is consistent. The
PCR, PLS and ICA model offer a poor fit to the data in both two sets
of data. The Ridge and LASSO regression models have more less the
same performance in both sets of data. The performance of Kernel
PCA indicates that there exists some non-linear dependencies on the
data - which Kernel-PCA is good at uncovering as compared to PCA.
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Classification models (II)

Ridge Regression
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Figure 10: Cross validation statistics for
estimating the regularization parameter
of ridge regression, and their error
bars. The dotted line represent estimate
of lambda which is within its one
standard error

In this section, we analyze a ridge regression model for classifica-
tion A suitable regularization parameter was obtained using cross-
validation25. The model fit statistics are shown below:

25 The best estimate for λ using cross
validation was found to be: 2.610173
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In the chart above, it is evident that about 60% of the model co-
efficients have shrunk to be close to 0, showing how effective ridge
regression is in producing interpretable models. The performance of
the ridge regression model on the training dataset is shown in the
Receiver Operating Characteristic Curve, with an AUC of: 0.85435.

LASSO Regression
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Figure 11: Cross validation statistics for
estimating the regularization parameter
of LASSO regression, and their error
bars. The dotted line represent estimate
of lambda which is within its one
standard error

In this section, we analyze the LASSO regression model fitted. A suit-
able regularization parameter was obtained using cross-validation26.

26 The best estimate for λ using cross
validation was found to be: 0.07095985

The model fit is displayed below:
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In the chart above, it is evident that about 87% of the model coef-
ficients have set to 0, showing how effective LASSO regression is in
feature selection. The performance of the LASSO regression model
on the training dataset is shown in the Receiver Operating Character-
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istic Curve, with an AUC of: 0.8592.

Elastic-net Regression
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Figure 12: The Receiver Operating
Characteristic curve for the ElasticNet
model using an alpha = 0.062063062,
and lambda = 0.62452991. The Area
Under Curve (AUC) is: 0.8641

In this section, the fit of the mixture of LASSO and Ridge regression
on the data is shown. Suitable values for the mixing weight α, and
the redularization parameter, λ are found using cross validation,
where for a fixed value of α, the best λ is searched for, and several
accuracy metrics are computed.
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From the charts above, it is evident that as the α increases, then
the model tends to be more sparse, the deviance explained decreases
while the training error rate decreases. The best combination of the α,
and λ parameter are chosen to minimize the cross validation error.

Principal Components Analysis

In this section, we ran the principal components analysis model using
30 principal components and the results of cross validation on the
principal components are displayed.
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Figure 13: PCA is applied to the
dataset, and the first two principal
components are plotted, and coloured
by the Direction variable. For the Re-
ceiver Operating Characteristic, the
AUC is: 0.8084

From the above charts, the first three principal components explain
maximal variability in the predictor space. Cross validation on the
training set indicates that, the first three principal components give
the best model in terms of Overall accuracy and Kappa. Hence for
the purpose of model fitting, we will only use three principal compo-
nents.

Kernel Principal Components Analysis

In this section, the Kernel principal components analysis model is
fitted using 30 components and the cross validation results are shown
below:
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Figure 14: Kernel PCA is applied to
the dataset, and the first two principal
components are plotted, and coloured
by the Direction variable. For the
Receiver Operating Characteristic, the
AUC is: 0.7908

From the above charts, the first four components explain maximal
variability in the predictor space. Cross validation on the training
set indicate that, only the first two or five components give the best
model in terms of Overall accuracy and Kappa. Hence for the pur-
pose of model fitting, we will only use two components27.

27 This is because for the 5-component
and 2-component model,there is no big
difference, hence we fit a model using 2

components only to ensure parsimonity

Independent Components Analysis

This section covers the application of Independent Components Anal-
ysis to the classification dataset. We restrict the number of indepen-
dent Components to 30 components.
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Figure 15: ICA is applied to the dataset,
and the first two Independent compo-
nents are plotted, and coloured by the
Direction variable. For the Receiver
Operating Characteristic, the AUC is:
0.7898

From the charts above, the highest overall accuracy and Kappa
are obtained when using 15 independent components, although as
compared to the cross validation performance of the other models
above, the ICA under-performs all models. We proceed to fit a GLM
using the first 15 components.
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Comparison of Models

In this section, we compare all fitted models, on the test dataset. For
comparison, we use the Overall Accuracy, although other metrics of
classification models are quoted. For the cutoff probability, we select
the cutoff which gave the highest Youden statistic on the training
data.
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The training set performance metrics are displayed below:
Model Accuracy Kappa Sensitivity Specificity PPV NPV F1

Ridge 0.812500 0.6238981 0.7741935 0.8484848 0.8275862 0.8000000 0.8000000

LASSO 0.812500 0.6231600 0.7419355 0.8787879 0.8518519 0.7837838 0.7931034

Elastic-Net 0.812500 0.6238981 0.7741935 0.8484848 0.8275862 0.8000000 0.8000000

PCA 0.781250 0.5620723 0.7741935 0.7878788 0.7741935 0.7878788 0.7741935

k-PCA 0.718750 0.4347399 0.6451613 0.7878788 0.7407407 0.7027027 0.6896552

ICA 0.765625 0.5275591 0.6451613 0.8787879 0.8333333 0.7250000 0.7272727

The testing set performance metrics are displayed below:
Model Accuracy Kappa Sensitivity Specificity PPV NPV F1

Ridge 0.6250 0.2835821 0.4444444 0.8571429 0.8000000 0.5454545 0.5714286

LASSO 0.5625 0.1515152 0.4444444 0.7142857 0.6666667 0.5000000 0.5333333

Elastic-Net 0.5625 0.1515152 0.4444444 0.7142857 0.6666667 0.5000000 0.5333333

PCA 0.7500 0.4920635 0.7777778 0.7142857 0.7777778 0.7142857 0.7777778

k-PCA 0.8125 0.6250000 0.7777778 0.8571429 0.8750000 0.7500000 0.8235294

ICA 0.6250 0.2615385 0.5555556 0.7142857 0.7142857 0.5555556 0.6250000

From the statistics and charts above, it is evident that Kernel PCA
outperforms all other models on the testing set, with an overall accu-
racy of 81.25%, with all other models having accuracy below 80%.

The good performance exhibited by Kernel PCA over PCA, shows
that there were some non-linear relationships within the predictors.
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Conclusion

This study compares models for high dimensional data both in the
regression and classification setting. The results show that, for regres-
sion: The elastic-net regression model, and Kernel-PCA outperform
the rest in terms of Mean Squared Error. For the classification models
fitted, the Kernel-PCA and PCA outperform the rest of the models.
The consistency of the Kernel PCA in both settings shows that the
dataset contained non-linear dependencies in the predictor space -
which Kernel-PCA is good at uncovering.

For both settings, the dimensionality reduction models used in-
cluding: PCA, k-PCA, and ICA, performed well in reducing the
multi-collinearity inherent in the original dataset,and all the dimen-
sionality reduction models show optimal performance with relatively
few components used in the model - which helps in pointing out
how important the dimensionality reduction models are at combating
multi-collinearity in the data.

In both settings, the hyper-parameters for the final models fitted,
such as: α, λ for the ridge, LASSO and Elastic-Net models, and p, the
number of components to use for the dimensionality reduction mod-
els, were obtained through cross-validation on the training set. Since
most models maintained consistency in both training and testing per-
formance, then it shows that cross-validation is useful in determining
good hyper-parameter estimates, for model fitting.

Recommendations

This article only focuses on a single dataset from Financial domain,
where we are interested in predicting the returns, or direction a port-
folio of assets would generate at a future time, using historical data
of technical, fundamental, and statistical metrics.

Future research could look into utilizing these models for high-
dimensional data from other domains such as health-care, marketing,
etc.

Future research could look into other dimensionality reduction
models not utilized in this article, such as Non-Negative Matrix Fac-
torization.28 28 This research did not cover NNMF,

due to computational constraintsFuture research could look into the importance of these dimen-
sionality reduction models, in the context of clustering, and other
Machine Learning models not utilized in this study.



regression and classification 29

References

1. Bishop, C. (2011). Pattern Recognition and Machine Learning.
Springer.

2. G. James et al., An Introduction to Statistical Learning: with Ap-
plications in R, Springer Texts in Statistics.

3. Abdi, H. and Williams, L. (2010). Principal component analy-
sis. Wiley Interdisciplinary Reviews: Computational Statistics,
2(4):433–459.

4. Altman, D. and Bland, J. (1994a). Diagnostic tests 3: Receiver oper-
ating characteristic plots. BMJ: British Medical Journal, 309(6948):188.

5. Barker, M. and Rayens, W. (2003). Partial least squares for discrim-
ination. Journal of Chemometrics, 17(3):166–173.

6. Caputo, B., Sim, K., Furesjo, F., and Smola, A. (2002). Appearance-
based object recognition using SVMs: Which kernel should I use?
In Proceedings of NIPS Workshop on Statistical Methods for Com-
putational Experiments in Visual Processing and Computer Vision,
volume 2002.

7. Hyvarinen, A. and Oja, E. (2000). Independent component anal-
ysis: Algorithms and applications. Neural Networks, 13(4-5):411–
430.

8. Kuhn, M. (2008). The caret package. Journal of Statistical Soft-
ware, 28(5):1–26.

9. Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling.
Springer.

10. MacKay, D. (2003). Information Theory, Inference and Learning
Algorithms. Cambridge University Press.

11. Wickham, H. and Grolemund, G. (2016). R for Data Science:
Import, Tidy, Transform, Visualize, and Model Data. O’Reilly
Media, Inc.


	Introduction
	Models for high-dimensional data
	Penalized regression methods
	Dimensionality Reduction methods
	Data
	Models
	Regression model (I)
	Classification models (II)
	Conclusion
	Recommendations
	References

